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Abstract Under a very natural condition, a matrix equation is proved to have only trivial solution. This result
is then applied to the classification problem of finite-dimensional estimation algebras, which gives a simpler proof of

Tang’ s recent result on the constant structure of the {2-matrix.
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1 Main Theorem
The concept of estimation algebras has been proved to be an invaluable tool in the study of nonlinear

af. df;
filtering problems . Wongm introduced the concept of {2-matrix, whose (i,/) entry is w; = #:‘L - a—f ,
J 7

where f is the drift term of the state evolution equation. Yau'? gave a complete classification of the finite-
dimensional estimation algebras of maximal rank under the condition that all the entries in {2 are con-
stants. So the difficulty of the classification problem is turned to proving the constant structure of the (2-
matrix. Chen et al . proved that if the estimation algebra is finite-dimensional and is of maximal rank,
then all the entries in {2 are degree one polynomials. Chen et al. [4Jintroduced a new matrix equation and
showed that it has only trivial solution when the dimension of the state space is less than or equal to 4.
This matrix equation plays an important role in the classification problem, but it is still not sure whether

the matrix equation has only trivial solution for arbitrary state space dimension.

In this paper, under a naturally satisfied condition in the classification problem, we prove that the
assertion of only trivial solution is true for arbitrary state space dimension. Our main theorem is stated as

follows .

Main Theorem. Suppose that 74 is a homogeneous polynomial of degree four in n variables x,,
**,%x,, and A is an antisymmetric matrix whose each entry is a homogeneous polynomial of degree one al-

so in these n variables x|, ***, x, such that

AAT = %H(m), (1)
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(’)2
where H(7,) = (?;74;) is the Hessian matrix of 7,.
i %

Write
A = Z A,‘ X
i=1

where the A; are real antisymmetric matrices. Suppose the following cyclic condition :
A(r D) + AGi,r) + A(L,i) =0, VYi,r,l =1,",n (2)
is valid , then A =0.
Using the same method we can also get a corollary in the situation where all the entries in the
1

matrix AAT - ?H (74) are homogeneous polynomials of degree two in k(% < n) variables x,,"*,

x;. Using this corollary we obtain a simpler proof of Tang’s recent result!®? that w,; are constants for

k+1<1i,j< n,where k is the quadratic rank of the estimation algebra.

Tang was the first to prove the above result about the constant structure of {2 by introducing a se-
ries of new computations about the estimation algebras. Our present work is tnspired by him, but the

method of our proof is more essential.

For the purpose of convenience and brevity, we omit the preliminary section and readers can re-
fer to ref.[5] for the background, notations and existing results of the classification problem of finite-

dimensional estimation algebras for nonlinear filtering system.

2 Proof of Main Theorem and its application

Firstly we prove a lemma about the indices-permuting principle of the Hessian matrix %H (74).

Lemma 1.  Suppose that 9, is a homogeneous polynomial of degree 4 in n variables x;, **,

32
X,y andH(m):( U/

axiaxj

) is the Hessian matrix of 7,. Write

] n
3H(7]4) = Z Huxlxj,
ij=1
where the H;; are real symmetric matrices and H; = H;. Then the four indices of H;(r, 1) are per-
mutable without changing the value, Y 1< i,j,r,l<n.

Proof .

%H(W) = Zn)Hijx,-xj = Z": Hax? + ZEH,-jxixj.
i=1

ij=1 i<

32 n
e _ %H(m)(r,l) = Z;Hﬁ(r,l) %2+ ZZHL-]-(r,l) x5, Vs r,l<on.

i<j
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So by differentiation, we have

1 a4"]4
i s = 1 s { 1 2 s
H,(r,l) AT RENEM orlcign

1 7, L
Hij(r,l) = ¥ nasdnin’ for i = j.

Combining these, we have

1 847]4 -

H;(r,1) = 4 9xpx350m Vi, j.,r,l.

Noting that the order of the mixed partial differentiation can be changed, we get the indices-permuting

principle,, namely, the four indices of H;;(r,!) are permutable without changing the value, ¥ 1<,
Jorsl<sn.

Proof of Main Theorem. Write

1 n
?H(7]4) = Znyli,

=1
where the H; are real symmetric matrices and H; = H;,.

Then (1) implies

y

A% = - Hy

i i

We have
A D) = gAj(j,i)A,-(i,n -~ Hy(o 1) = - Hy(joj) = 2"1'("’1'“’“’“' (3)
Meanwhile because of the cyclic condition (2), we have
AL 0D = 4G + AL D).
So
A1) = _EIA,(J-,L-)A,(L-,J) _ 2Aj<j,i>A,(i,J'> . _EIA,-u,i)Ai(j,z). (4)
Comparing (3) with (4), we have
Z AGDAGD = 0. (5)

Now we get
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S AG,DAGNAD = DS 4G, DAG, D) A1) = 0.

ir=1 r=1 i=1

On the other hand,
DVAG A D) == 2H (G, 1) = 2 AG, DA,
r=1 r=1

1

Using the indices-permuting principle of — H(7,), we have the following two equations:

2

SYAG A D) = = 2H,(i0f) = S AG ) A, 1)

(6)

= S 4G DAG) + D AG DA = D AG D AGD,

S G4 = = 2H, (001D = D)4, A, D)

=20 4, DA D = DTAG, DA D.
r=1 r=1
Formula (7) implies |

S AGOAG DA = DA4G DS 4G DA D)

(7)

(8)

CSUAG DA DA + 4G DA DA = 4G, DA DA, D]

iyr=1
= A A A + AR AL - lzlAj(j,i)Ai(l,r)Aj(r,j).

Because A; A, A; is also antisymmetric, from (6) we get

Z":Aj(j,i)Ai(l,r)Aj(r,j) = A A (j,)).

tr=1

We also have

E A, D AG A DAL

= :_1(i;Aj(j’i)Ai(faT))Aj(r,l)Aj(l,j) = 0.

From (8), we can get

(9)

(10)
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DI AGDAG DA DAL = D 4G D D 4G DA D) 4L

22D 4G DA DA DALY = D) 4G DAG DAL DAL)

irl=1

=242(j.j) - Z";(Z}lAj(j,i)Ai(r,l)Aj(l,j))Aj(j,r).
From (10), (9) and (5), we have
244(j,)) = an“‘fz AGDAG, ) = E_lAﬁ(j,i)A,(i,jM,-(j,r) -
= - Zn;Ajz(j,i)( an]Aj(j,r)A,(j,i)) - 0,
which is
A*(j,j) = 0. (11) ..
From the symmetry of Ajz, we get
0= A%(,j) = Z)Aﬁ(j,n AP (i,j) = Z[Aﬁ(j,n]z,
which implies A*(j,i) = 0. In particular, 4°(j,;) = 0.
In view of the antisymmetry of A;, we have
-
0= 42) = D40 4G =~ DI4GOT,
which immediately implies
A(j,i) = 0. (12) -
As a special case of the indices-permuting principle, we have
H,(j,j) = H(p,p) = Hy(p,j),
which is equivalent to .
2[Ap<j,r>12 - ZEA,@J)P - %2[Ap<p,r>Aj<j,r> e Ap. A GO,
From (12), we have

n

DI4,GAT = Dlap.0P = 22 46.04G,n.
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So

0 =22":[Ap(j,r)]2 + ZZHDEA,-(p,r)]Z - 22 A(p,r)A,(G,r)

n

= S 4,G T+ B4 0P + D460 - 40T,

r=1 r=1

which implies A,(j,r) =0 for p,j,r=1,"",n.

So A =0 and the theorem is proved.

Our method of proof is still valid in the situation where all the entries in the matrix
1
T_ -
AA )

H(7,) are homogeneous polynomials of degree two independent of n — k variables x, .,

***,%,, and we can get the following corollary.
Corollary 1.  Suppose that all the hypotheses about 34 and A in Main Theorem hold except for
expression (1), which is replaced by the following weaker one that all the entries in the matrix

-1
AAT - EH(774)

are homogeneous polynomials of degree two in k(k < n) variables x,,**, %,

Then A(p,j) = 0,

Vp,j=k+1,,n.
Proof .

In this situation we have

Aij+ AjAP =—2Hpj, for p>korj>k,

2 .
A = - Hy, forj > k.
When both p and j are greater than %, we have kept at least one of the lower indices of Hij( r, 1)

greater than k in the indices-permuting process of the proof of our main theorem. So the proof is
still valid and we can get

Ap(jsr)=0a VP,j=k+1,"',n,

r=1,",n.

Noting the cyclic condition, we get

A,(P,J) = - Aj(T,P) - Ap(jar) = Aj(Par) - Ap(jsr) = 09

VP,J =k + 1""9na

So

A(p9])= EAr(p’J) xrzo, Vp’j= k+1’...’n.
r=1

Using this corollary we can derive Tang’s recent result on the constant structure of the {2-ma-
trix, which is stated as follows.
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Theorem 1. If & is a finite-dimensional estimation algebra of maximal rank and k is the

quadratic rank of &, then w,; are constanis fork+l<i,jsn.

Proof. By computing [ [ Ly, Dj] ,D,], we can get that

n 1 82174
,Z:;‘Bf'ﬂ” T2 dx;dx,

are homogeneous degree-two polynomials depending on only x;,**, x; for 1< j, < n, where §3; is
the homogeneous degree-one part of w;; and k is the quadratic rank of the estimation algebra. (See
ref. [5] for the details of the computations . ) Let

A= (By).

Jw; Jda; I, .
Because ﬁ + 5;1— —a—x‘Ll =0forO0<i,j,l<n, the cyclic condition is clearly satisfied. Then we
I i i

invoke Corollary 1 and get
ﬂij=A(i,j)=0, fork+1<i,j<n,

which completes our proof.

Remark . Tangm initially proved theorem 1 by introducing a series of new computations about
the estimation algebras, and he first obtained the two key intermediate equations (6) and (11)
through computations. Not only have we given a positive answer to an open problem under a very nat-
ural condition, but we can also show that Tang’ s recent result (Theorem 1) can be derived from

merely computing [l Ly, D]-] , D,] .
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